
Journal of Computational Physics 227 (2008) 9477–9497
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Computing several eigenpairs of Hermitian problems
by conjugate gradient iterations

E.E. Ovtchinnikov
Harrow School of Computer Science, University of Westminster, Watford Road, Northwick Park, London HA1 3TP, UK
a r t i c l e i n f o

Article history:
Received 12 April 2007
Received in revised form 11 December 2007
Accepted 28 June 2008
Available online 30 July 2008

Keywords:
Eigenvalue computation
Conjugate gradient method
0021-9991/$ - see front matter � 2008 Elsevier Inc
doi:10.1016/j.jcp.2008.06.038

E-mail address: e_ovtchinnikov@hotmail.com
a b s t r a c t

The paper is concerned with algorithms for computing several extreme eigenpairs of Her-
mitian problems based on the conjugate gradient method. We analyse computational strat-
egies employed by various algorithms of this kind reported in the literature and identify
their limitations. Our criticism is illustrated by numerical tests on a set of problems from
electronic structure calculations and acoustics.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The conjugate gradient (CG) method was originally introduced as a method for solving linear systems by [11]. Later it was
re-interpreted as a functional minimization method and has since been widely used as such in the smooth nonlinear opti-
mization, see e.g. [9,29,5,23]. CG is also used in the Hermitian eigenvalue computation, via the minimization of the Rayleigh
quotient functional, see [3,22,8,6], and is popular as an eigenvalue computation tool with computational physicists, see e.g.
[30]. One of the attractive features of CG method is that it can be applied to the generalized eigenvalue problem Lx ¼ kMx,
where L and M are Hermitian operators, the latter assumed positive definite, without the need to solve linear systems with
either L or M or a linear combination thereof. Another useful feature is the ability to directly employ the so-called precon-
ditioning, a convergence acceleration technique that opens way to the efficient solution of large-scale problems and is now-
adays widely used for solving large linear systems. We note that most other methods for solving large-scale eigenvalue
problems, such as Lanzcos method and its variants, do not enjoy the first feature, and can only use preconditioning indirectly,
for solving certain auxiliary linear systems.

The application of the conjugate gradient method to the minimization of the Rayleigh quotient functional produces the left-
most eigenvalue and corresponding eigenvector. (For simplicity of discussion, here we refrain from considering the case where
iterations stop at a saddle point, i.e. at an eigenvector corresponding to an internal eigenvalue.) Further eigenpairs can be com-
puted by conjugate gradient iterations in the subspace orthogonal to the computed eigenvector, or some other deflation tech-
nique, see e.g. [21]. However, the convergence of iterations can be very slow in the case of a problem with clustered eigenvalues.
By analogy with the power method (see e.g. [21]), one expects ‘cluster robust’ convergence if several vectors are iterated simul-
taneously, and indeed, the convergence results of [18,20] suggest that this is the case for conjugate gradients as well.

A number of conjugate gradient algorithms for simultaneous computation of eigenpairs can be found in the literature; our
discussion of these exclude various algorithms that use CG for solving certain auxiliary linear systems. In [16] CG is applied
simultaneously to several vectors with orthogonalization of new vector iterates after each CG step ensuring that they do not
converge to the same eigenvector. In this paper we refer to this approach to the use of CG in eigenvalue computation as
. All rights reserved.

mailto:e_ovtchinnikov@hotmail.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

9478 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
simultaneous. In addition, they considered, and discarded, two alternative approaches. The first one, which later became
known as trace minimization, essentially employed CG for the minimization of the sum of the Rayleigh quotients on m
orthogonal vectors, m being the number of eigenpairs to be computed. The second employed the Rayleigh–Ritz procedure
in the trial subspace spanning current vector iterates and the respective gradients of the Rayleigh quotient conjugated to
previous search directions; here we refer to this approach as the block one. All three approaches have since been used (in
some cases being apparently re-invented) by other authors. The simultaneous CG algorithm of [16], enhanced with precon-
ditioning, is employed by [26]. The use of CG for the trace minimization is thoroughly studied by [6].1 The block CG algorithm
described by [16] was re-invented by [1]. An algorithm based on a conceptually close block CG approach was suggested by [15].
The present paper introduces a variation of the block CG algorithm of [16] and a new block CG algorithm designed in [20] based
on the local convergence analysis of a generic block CG scheme instantiated by the block algorithms just mentioned.

In this paper we analyse, both theoretically and numerically, the computational strategies implemented by the men-
tioned CG algorithms for simultaneous eigenvalue computation and comment on their merits and limitations. Such a discus-
sion does not appear to be found elsewhere in the literature, and some authors seem to be unaware that the approaches to
eigenvalue computation they employ can be found in [16]. As a result, the arguments pro et contra certain ways to use CG in
eigenvalue computation offered by [16] remain ignored. The same fate appears to befall the ideas of other authors. The CG
algorithms of [6] are mentioned in neither of the recent publications [1,2], and although referenced, this paper has not at-
tracted any comments of [15]. The results of the latter paper, in turn, are not mentioned by [2], who have chosen to imple-
ment the algorithm of [26] clearly inferior to that of [15], as can be seen from the numerical tests of the present paper.

Our discussion of various approaches to the use of CG in eigenvalue computation is illustrated by numerical tests on sev-
eral problems from the electronic structure computation and acoustics, two areas where CG is especially competitive due to
the availability of very efficient AMG preconditioners and the high computational cost of matrix factorizations hindering the
performance of shift-and-invert eigensolvers. An extensive range of numerical tests with CG with AMG preconditioning and
algorithms based on shift-and-invert techniques demonstrating the competitiveness of the former can be found in [1]. To a
certain extent, the numerical tests of the present paper complement those of the cited paper, which contains tests of two
arbitrarily chosen block CG algorithms but does not analyse comparatively their observed performance. It should be stressed,
however, that the methodologies employed by the two papers are quite different. While the conclusions of [1] are entirely
based on experimental results, the criticism of the present paper is brought about by theoretical arguments, and the tests are
there mostly for illustration purposes.

The plan of the paper is as follows: In Section 2, we discuss the available conjugate gradient algorithms for eigenvalue
computation, starting with algorithms for computing the leftmost eigenvalue and proceeding to a more detailed description
and discussion of algorithms for simultaneous eigenvalue computation mentioned above. Based on this discussion, we select
a group of algorithms the convergence properties of which we illustrate in Section 4. In Section 3, we give formal description
of the selected algorithms and calculate their computational costs. In Section 4, we present and discuss the results of numer-
ical tests with these algorithms.

2. Conjugate gradient schemes for eigenvalue computation

2.1. Schemes for computing the leftmost eigenpair

Let us briefly discuss the application of the conjugate gradient method to the computation of the leftmost eigenvalue of a
Hermitian operator before addressing the computation of several eigenpairs simultaneously.

Let L be a Hermitian operator. Denote by kj and xj the eigenvalues and eigenvectors of L enumerated in the ascending or-
der of kj, and denote by kðuÞ the corresponding Rayleigh quotient functional, i.e.
1 The
we do n
kðuÞ ¼ ðLu;uÞ
kuk2 : ð1Þ
The minimum value of kðuÞ is k1; hence k1 can be computed by the conjugate gradient method for the minimization of the
Rayleigh quotient functional kðuÞ. We remind that this method produces a sequence of vector iterates xi by the following
two-term recurrent formulae:
xiþ1 ¼ xi � aiyi; ð2Þ
yiþ1 ¼ giþ1 þ biy

i; ð3Þ
where x0 is an arbitrary nonzero vector (initial guess), y0 ¼ g0, gi is the gradient of kðuÞ at u ¼ xi, and ai minimizes kðxi � ayiÞ.
We observe that step (2) employs linear search in the direction indicated by yi, hence here we refer to yi as the search direc-
tion vector, or simply search direction. Specific properties of the Rayleigh quotient functional allow certain modifications of
the above general CG scheme: the new vector iterate xiþ1 can be normalized, the gradient gi can be replaced by the residual
vector ri ¼ rðxiÞ ¼ Lxi � kðxiÞxi, which is collinear to gi, and the linear search can be replaced with the minimization in the
two-dimensional subspace spanfxi; yig, for which the Rayleigh–Ritz procedure can be employed. Yet another approach is
to minimize kðvÞ along a geodesics on the sphere kvk ¼ 1 (see [6]).
trace minimization approach is also employed in the two-level algorithm of [25] with inner CG iterations; as pointed out earlier, in the present paper
ot discuss this and other algorithms that use CG in such subsidiary way.

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9479
Step (3) is referred to as the conjugation of giþ1 to yi, or else the conjugation of the search directions yiþ1 and yi. Various
conjugation schemes, i.e. ways to compute bi, have been suggested in the literature, notably:
bi ¼
kgiþ1k2

kgik2 ðBradbury—Fletcher schemeÞ; ð4Þ

bi ¼
ðgiþ1; giþ1 � giÞ

kgik2 ðPolak—Ribiere schemeÞ; ð5Þ

bi ¼ �
ðHðxiþ1Þgiþ1; yiÞ
ðHðxiþ1Þyi; yiÞ ð‘exact conjugation0 schemeÞ; ð6Þ

bi ¼ �
ðgiþ1; yiÞL
kyik2

L

ðPerdon—Gambolati schemeÞ ð7Þ
(cf. respectively [3,23,5,22]). In (6), Hðxiþ1Þ is the Hessian of kðuÞ at u ¼ xiþ1, or a multiple thereof, e.g.
HðuÞ ¼ ð1� 2 PuÞðL� kðuÞÞð1� 2 PuÞ; ð8Þ
where Pu is the orthogonal projector onto u (the term ‘exact conjugation’ for (6) is borrowed from [6]). In (7) L is assumed to
be positive definite.

We observe that the above expressions are borrowed verbatim from the case of the quadratic functional
wðuÞ ¼ ðLu; uÞ � ðf ; uÞ � ðu; f Þ with Hermitian positive definite L, and they are actually used for the minimization of a gen-
eral smooth nonlinear functional wðuÞ (in which case (4) is usually referred to as Fletcher–Reeves scheme, since it was
adapted to a general wðuÞ by [9]). Yet another way to compute bi was suggested by Takahashi [29]: bi can be chosen to min-
imize the functional at hand at xiþ2 ¼ xiþ1 � aiþ1ðgiþ1 þ biyiÞ. It is not difficult to see that in this case the new vector iterate
xiþ2 minimizes the functional in question in the two-dimensional manifold xiþ1 þ spanfyi; yiþ1g ¼ xiþ1 þ spanfyi; giþ1g, and,
in the case of the Rayleigh quotient functional, in the three-dimensional subspace spanfxiþ1; giþ1; yig ¼ spanfxiþ1; giþ1; xig;
hence this scheme is known as locally optimal [24,14].

Yet another conjugation scheme is suggested by [19] based on the so-called Jacobi orthogonal complement correction
equation of [27]:
Jðk1; xiþ1Þðxiþ1 � x1Þ ¼ riþ1; ð9Þ
where x1 is normalized in such way that xiþ1 � x1 is orthogonal to xiþ1, and
Jðl;uÞ ¼ ð1� PuÞðL� lÞð1� PuÞ: ð10Þ
Since the residual riþ1 is collinear to the gradient of kðuÞ at u ¼ xiþ1, and xiþ1 is the minimum point of kðuÞ on the line
uðsÞ ¼ xi � syi, the residual riþ1 is orthogonal to yi, and hence the correction is orthogonal to yi in the sense of the semi-scalar
product ðJðk1; xiþ1Þ�; �Þ (it is not difficult to see that Jðk1;uÞ is positive semi-definite for any u). In view of this, [19] suggests
making yiþ1 orthogonal to yi in Jðk1; xiþ1Þ-scalar product, which minimizes the Jðk1; xiþ1Þ-angle between yiþ1 and the correc-
tion vector. The resulting conjugation scheme, with k1 replaced by any available approximation thereof, e.g. kiþ1, is referred
to as Jacobi scheme by [19], and is shown to be asymptotically (as xi ! x1) equivalent to Takahashi (locally optimal), Polak–
Ribiére and exact conjugation schemes there.

It is important to note that in the framework of the conjugate gradient method any scalar product can be used for
computing the gradients gi (the same scalar product and corresponding norm must then be used in the above expres-
sions for bi), which opens way to the use of preconditioning. In practical terms, if the energy scalar product ðNu; vÞ for
a certain Hermitian positive definite operator N is used, then the gradient gi is proportional to N�1ri, and the step (3)
transforms into
yiþ1 ¼ Kriþ1 þ biy
i; ð11Þ
where K ¼ N�1. Accordingly, the conjugation schemes become:
bi ¼
kriþ1k2

K

krik2
K

ðBradbury—Fletcher schemeÞ; ð12Þ

bi ¼
ðriþ1; riþ1 � riÞ2K

krik2
K

ðPolak—Ribiere schemeÞ; ð13Þ

bi ¼ �
ðHðxiþ1ÞKriþ1; yiÞ
ðHðxiþ1Þyi; yiÞ ð‘exact conjugation0 schemeÞ; ð14Þ

bi ¼ �
ðKriþ1; yiÞL
kyik2

L

ðPerdon—Gambolati schemeÞ; ð15Þ

bi ¼ �
ðJðkiþ1; xiþ1ÞKriþ1; yiÞ
ðJðkiþ1; xiþ1Þyi; yiÞ

ðJacobi schemeÞ: ð16Þ

9480 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
It remains to note that the conjugate gradient method can also be applied to the generalized eigenvalue problem Lx ¼ kMx, in
which case the Rayleigh quotient and residual vector become
kðuÞ ¼ ðLu;uÞ
ðMu;uÞ ; rðuÞ ¼ Lu� kðuÞMu; ð17Þ
while the (scaled) Hessian HðuÞ and the Jacobi correction operator Jðu;lÞ become
HðuÞ ¼ ð1� 2P�u;MÞðL� kðuÞMÞð1� 2Pu;MÞ; ð18Þ
Jðl;uÞ ¼ ð1� P�u;MÞðL� lMÞð1� Pu;MÞ; ð19Þ
where Pu;M is the orthogonal projector onto spanfug in the sense of the scalar product ð�; �ÞM ¼ ðM�; �Þ and P�u;M is its adjoint.
We stress that M�1 is not used by any of the CG schemes discussed here.

2.2. Schemes for computing several leftmost eigenpairs

As mentioned in the Introduction, one way to compute several eigenpairs, and the most commonly used one, is to com-
pute them successively by single-vector iterations using this or that deflation technique. For instance, having computed the
first eigenpair by any of the conjugate gradient schemes discussed in the previous section, we proceed to minimizing the
Rayleigh quotient in the subspace orthogonal to the computed eigenvector, which produces the second eigenpair, and so
on. Here we discuss various alternative computational schemes suggested in the literature whereby eigenpairs of interest
are computed simultaneously.

Below the superscript i refers to the iteration number, and subscript j enumerates approximate eigenpairs in the ascend-
ing order of approximate eigenvalues.

The SIRQIT-CG algorithm of [16] computes the search direction yi
j by conjugating the gradient gi

j of kðuÞ at u ¼ xi
j to the

respective previous search direction yi�1
j (Bradbury–Fletcher scheme is suggested), and orthogonalizes the new CG iterate

xiþ1
j ¼ xi

j � aijyi
j to xiþ1

1 ; . . . ; xiþ1
j�1. After certain number of iterations (three are recommended), the Rayleigh–Ritz procedure is

applied in the trial subspace spanning xi
j and the iterations are restarted. Sartoretto et al. [26] use the same iterative scheme

with preconditioning and orthogonalization of yi
j to xiþ1

1 ; . . . ; xiþ1
j�1, and recommend 10–20 inner iterations. Fu and Dowling

[10] use a similar scheme but with conjugation by Perdon–Gambolati scheme and no Rayleigh–Ritz procedure.
The computational strategy implemented by the algorithms just described is to stick to single-vector CG iterations keep-

ing the interaction between individual vector iterates to a minimum between the restarts. The rationale for this strategy gi-
ven by [16] is to avoid ‘destruction of the underlying motivation for conjugacy’, which is is considered as undermining the
method. The intention to use a familiar method, single-vector CG, proved to be successful in practical computation and sup-
ported by plausible theoretical arguments (that any smooth functional is ‘almost quadratic’ in the vicinity of a minimum
point), is fairly understandable. However, avoiding the interaction between individual vector iterates is, actually, not such
a good idea. Indeed, focusing for a moment on the vectors xi

1 produced by the algorithms in question between restarts,
we observe that they coincide with those produced by a single-vector CG, hence, any improvement in performance over
the single-vector iterations with deflation (indeed observed in numerical tests) may only come from the Rayleigh–Ritz pro-
cedure. Thus, on the one hand, one needs to do restarts frequently enough, in order to benefit from this procedure, and, on
the other hand, not too frequently, in order to fully benefit from the CG convergence acceleration compared to much less
efficient steepest descent, and any choice for the inner iterations number (between 1 and infinity) inevitably compromises
both acceleration mechanisms.

Alongside with the approach just described, [16] considered, and discarded, two alternative approaches to the use of CG
in eigenvalue computation. The first one, which has since become known as the trace minimization, utilises the fact that the
normalized eigenvectors corresponding to m leftmost eigenvalues minimize the quadratic functional
wðu1; . . . ; umÞ ¼
Xm

j¼1

ðLuj;ujÞ ¼ Tr U�LU; U ¼ ½u1; . . . ; um�; ð20Þ
over all sets of m orthonormal vectors u1; . . . ;um. Hence, the eigenvalue problem for the Hermitian operator L acting in n-
dimensional Euclidean space can be re-formulated as the quadratic minimization problem in nm-dimensional space subject
to constraint U�U ¼ I (or U�MU ¼ I, in the case of the generalized problem). where I is the m-by-m identity matrix, or else the
unconstrained problem for the non-quadratic functional
wðu1; . . . ; umÞ ¼ TrððU�UÞ�
1
2U�LUðU�UÞ�

1
2Þ: ð21Þ
[16] considered solving this problem by CG iterations
Xiþ1 ¼ Xi � aiY
i; Yiþ1 ¼ Giþ1 þ biY

i; ð22Þ
where Xi ¼ ½xi
1; . . . ; xi

m�, Yi ¼ ½yi
1; . . . ; yi

m� and Gi ¼ ½gi
1; . . . ; gi

m�. Observing that a CG iteration is controlled by just two scalar
quantities, ai and bi, rather than 2m employed by the simultaneous CG scheme they favoured, [16] dismissed this approach
as not delivering ‘a commensurate increase in power’.

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9481
The second alternative approach considered by [16] can be described as follows: Denote by RRmðVÞ the set of m Ritz
vectors in the trial subspace V corresponding to m leftmost Ritz values (see Section A.1 for the summary of the Ray-
leigh–Ritz procedure). As mentioned above, the linear search step (2) can be replaced by the Rayleigh–Ritz procedure in
spanfxi; yig, i.e.
xiþ1 ¼ RR1ðspanfxi; yigÞ: ð23Þ
Accordingly, [16] suggested the following ‘block’ generalization of (23) and (3):
Xiþ1 ¼ RRmðspanfXi; YigÞ ð24Þ
Yiþ1 ¼ Giþ1 þ YiBi; ð25Þ
where Bi is a m-by-m diagonal matrix and Xi, Yi and Gi are same as above. In this paper, we refer to the conjugate gra-
dient schemes of such form (but with a general m-by-m matrix Bi) as ‘block’ ones. It is observed in [16] that the iterative
scheme (24) and (25) ‘appears to have the necessary power’; nevertheless, it is discarded as ‘improper extension of Ray-
leigh quotient minimization by CG’, since conjugacy of n-by-m matrices ‘is not a well-defined concept’. Both alternatives
are claimed to be proved inferior in performance in numerical tests, the results of which, however, are not presented in
the cited paper.

Both of the two approaches suggested and discarded by [16] appear to come largely unnoticed and similar iterative
schemes have been suggested later by several authors, often without a reference to [16]. A trace minimization CG algorithm
based on rather sophisticated geometrical calculations was suggested in [6]. Johnson and Joannopoulos [13] observed that
this algorithm did not seem to work well when preconditioning is employed and suggested using iterations (22) for the
unconstrained functional (21) instead. It is interesting to note that in Section 4.4 of [6] yet another trace minimization
scheme is mentioned that is essentially a block scheme (24) and (25) with Bi ¼ biIm, where Im is m-by-m identity and bi is
a scalar given by
bi ¼
hGiþ1;Giþ1 � Gii
hGi;Gii

; hU;Vi ¼ Tr V�U: ð26Þ
Numerical test of the present paper show that this approach to the trace minimization works reasonably well with precon-
ditioning. A block conjugate gradient scheme with a diagonal Bi based on Bradbury–Fletcher scheme, i.e. with kgiþ1

j k
2
=kgi

jk
2

on the diagonal, was re-invented and shown to be actually working, albeit in the framework of a somewhat different iter-
ative scheme, by [1]; in this paper we test a similar block Polak–Ribiére scheme.

The trace minimization approach is another example of a computational strategy that aims at employing existing CG
schemes that have been used in nonlinear optimization. The criticism of this approach offered by [16] is rather vague and
appeals to reader’s intuition: it looks highly unlikely that an algorithm employing a conjugation scheme with just one scalar
parameter bi would be competitive to that employing several conjugation parameters. However, in our tests, an algorithm
based on the trace minimization approach actually often performed better than the algorithm favoured by [16], owing lar-
gely to the aforementioned internal conflict ailing the latter. Still, treating all eigenpairs equally, an inherent feature of the
trace minimization approach, has its limitations. Available convergence results for CG (see e.g. [5]) estimate the convergence
rate in terms of the condition number of the Hessian of the minimized functional. The calculations of [6] (Section 4.4) imply
that this condition number is asymptotically (as spanfXig approaches the invariant subspace corresponding to k1; . . . ; km)
equal to that of the block diagonal operator matrix bL with operators bLj ¼ ð1� PÞðL� kjÞð1� PÞ on the diagonal, where P is
the orthogonal projector onto the invariant subspace corresponding to m leftmost eigenvalues. Simple calculation shows
that the latter condition number is ðkn � kmÞ=ðkmþ1 � kmÞ and hence, the convergence may be slow if the eigenvalues of inter-
est are poorly separated from the rest of the spectrum. To make things worse, the convergence of all m eigenpairs, rather
than just the mth one, may be slow because the algorithm minimizes the sum of Rayleigh quotients. A conceptually similar
case is that of the system bLû ¼ 0. It is not difficult to see that in the case where the gap kmþ1 � km is small, the poor condi-
tioning of the last block bLm would hinder the convergence of all parts of the vector iterate ûi to the solution û (a vector in the
null-space of bL), whereas the convergence of the part ûi

1 corresponding to the diagonal block bL1 could be faster (assuming
that k1 is further from kmþ1 than km) if the system bL1û ¼ 0 was solved independently. In the case of the eigenvalue problem,
such an ‘indiscriminate’ convergence behaviour of the trace minimization CG is rather unfortunate from the practical point
of view because it denies the algorithm the benefits of deflation, i.e. removing the convergent eigenpairs from further cal-
culations. The use of the Rayleigh–Ritz procedure introduces a certain degree of discrimination between individual eigen-
pairs, so that leftmost ones converge earlier than the rest, but still not early enough compared to other algorithms, as we
will see in Section 4.

The block CG approach is radically different to the previous two in its attempt to introduce an iterative scheme that is
genuinely designed for simultaneous computation of eigenvalues, rather than borrowed from the nonlinear optimization.
Longsine and McCormick [16] did not consider their attempt quite successful in view of the uncertainty regarding the con-
jugation matrix Bi, and the diagonal Bi they contemplated, apparently for want of a better choice, is merely the one they used
in SIRQIT-CG. Our experience is that it fails sometimes, but with Bradbury–Fletcher scheme replaced by Polak–Ribiére one,
(24 and 25) proved to be a formidable competitor to other CG schemes discussed here.

9482 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
An approach conceptually close to the block CG scheme of [16] is employed by [15], where the following iterative scheme
is suggested:
Xiþ1 ¼ RRmðspanfXi; Gi; Xi�1gÞ: ð27Þ
The above scheme is obviously related to the locally optimal (Takahashi) scheme, and the algorithm of [15] based on this
scheme is known as the locally optimal block (preconditioned) conjugate gradient (LOBPCG) method; the term ‘preconditioned’
indicates explicitly that gradients can be computed in any scalar product – cf. Section 2.1. The new approximate eigenvalues
produced by (27) are, by the minimax principle, not greater than those produced by (24 and 25) for any conjugation matrix
Bi, and the LOBPCG invariably converged significantly faster in terms of the number of iterations than (24 and 25) with diag-
onal Bi in our tests. However, the computational cost of a LOBPCG iteration is considerably higher than that for all previously
mentioned CG algorithms, and so is the risk of the Rayleigh–Ritz procedure failure caused by poorly conditioned basis of the
trial subspace.

It is theoretically possible to reformulate LOBPCG as a block CG scheme 24 and 25 with Bi satisfying the local optimality
condition in the sense of the smallest possible new approximate eigenvalues. It is difficult though, if possible at all, to obtain
an explicit formula for such local optimal Bi. The investigation of the convergence properties of 24 and 25 by [20] resulted in
a suggestion for Bi that is optimal in a different sense, notably: each new search direction yiþ1

j is asymptotically (as
spanfXiþ1g approaches the invariant subspace corresponding to k1; . . . ; km) close to the best possible one for the line search
xiþ2

j ðsÞ ¼ xiþ1
j � sð1� Piþ1Þyiþ1

j , where Piþ1 is the orthogonal projector onto Xiþ1 (again, the orthogonalization ensures conver-
gence to different eigenpairs). Ovtchinnikov [20] shows that these ‘individually locally optimal’ search directions satisfy the
orthogonality condition ðJðkiþ1; Xiþ1

j Þyiþ1
j ; yi

jÞ ¼ 0, where Jðl;UÞ is a generalization of the Jacobi orthogonal complement cor-
rection operator Jðu;lÞ of the previous section given by
Jðl;UÞ ¼ ð1� PUÞðL� lÞð1� PUÞ; ð28Þ
and PU is the orthogonal projector onto spanfUg. In order to obtain compact expressions for the entries bðiÞkj of Bi, [20] rewrites
(24 and 25) equivalently as
½Xiþ1; Ziþ1� ¼ RRmi
ðspanfXi; YigÞ ð29Þ

Yiþ1 ¼ Giþ1 þ Ziþ1Bi; ð30Þ
where mi is the dimension of the trial subspace spanfXi; Yig and the columns ziþ1
k of Ziþ1 are Ritz vectors corresponding to

li ¼ mi �m right-most Ritz values in this subspace. The entries of the conjugation matrix Bi are then given by
bðiÞkj ¼ �
ððL� kðxiþ1

j ÞÞgiþ1
j ; ziþ1

k Þ
kðziþ1

k Þ � kðxiþ1
j Þ

: ð31Þ
The optimality enjoyed by the search directions of block Jacobi-conjugation scheme just described is obviously of a weaker
kind than that enjoyed by LOBPCG. However, this does not automatically imply that the convergence of the Jacobi scheme
has to be slower; in fact, in some of our tests it was even faster than that of LOBPCG. Apparently, the situation we face here is
similar to that with LOBPCG compared to the block generalized Davidson method. Based on numerical tests with certain
globally optimal algorithm, [15] conjectures that although the approximate eigenvalues computed on each step of the block
generalized Davidson method are not greater than those computed by a step of LOBPCG, the convergence of the former can-
not be significantly faster than that of the latter. The numerical tests of the present paper, performed on a wider range of
problems, suggest that the same might be said about Jacobi scheme versus LOBPCG.

In what follows we illustrate numerically the performance the iterative scheme described above with the exception of
Fu–Dowling scheme, which uses Perdon–Gambolati conjugation scheme that is shown to be inferior to other schemes in per-
formance by [8]. For successive eigenvalue computation we opt for Polak–Ribiére scheme, which proved to be remarkably
efficient and reliable in our tests, and for the trace minimization, we opt for ((24)–(26)).

3. Algorithms

In this subsection, we present formal descriptions of the algorithms that have been tested numerically. Below ne stands
for the number of eigenpairs needed and m for the number of iterated vectors: in algorithms for simultaneous computation
of eigenpairs it is advisable to use m > ne in order to avoid convergence problems with the rightmost eigenpairs due to the
poor separation of the respective eigenvalues from the rest of the spectrum. We assume that a set of m linearly independent
vectors x1; . . . ; xm is available at the start of the iterations. For simplicity of notation, we drop the superscript indicating the
iteration number, i.e. current approximate eigenvectors are denoted simply by xj. The maximal number of iterations is de-
noted by imax.

For the sake of generality, the algorithms are formulated for the generalized eigenvalue problem Lx ¼ kMx; modifications
for the case of the standard eigenvalue problem are fairly obvious. Below we use the terms M-orthogonalization and M-nor-
malization for the orthogonalization and normalization in the scalar product ð�; �ÞM ¼ ðM�; �Þ and norm k � kM ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ð�; �ÞM

p
(note

that this notation is extended to arbitrary Hermitian positive definite M).

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9483
For each algorithm we give a summary of main computational expenses; the rest are negligible for the values of m and n
used in the tests.

3.1. Successive Polak–Ribiére algorithm

One can compute eigenpairs by single-vector CG with deflation using any conjugation scheme – in our tests we opt for
that by Polak–Ribiére.

Algorithm 3.1. [Successive computation of eigenpairs by Polak–Ribiére scheme with deflation]

For k ¼ 1; . . . ;m ¼ ne, do:
(1) If k > 1, then M-orthogonalize xk to x1; . . . ; xk�1 and M-normalize it.
(2) For i ¼ 1;2; . . . ; imax, do:

(a) Compute the Rayleigh quotient kk ¼ kðxkÞ and the residual r ¼ Lxk � kkMxk.
(b) If the norm of the residual is less than the residual tolerance, go to next k.
(c) Compute g ¼ Kr.
(d) M-orthogonalize g to x1; . . . ; xk.
(e) If i > 1, then

(i) compute c ¼ ðr; gÞ and b ¼ ðc� ðrp; gÞÞ=cp, where rp and cp are the residual vector and c from the previ-
ous iteration;

(ii) if b < 0 set b ¼ 0;
(iii) compute the new search direction y ¼ g þ byp, where yp is the previous search direction.
f) Set rp ¼ r, yp ¼ y and cp ¼ c.
(
(g) M-orthogonalize y to x1; . . . ; xk�1.
(h) Compute the Gram matrices
Lk ¼
kk ðLy; xkÞ

ðxk; LyÞ ðLy; yÞ

� �
; Mk ¼

1 ðMy; xkÞ
ðxk;MyÞ ðMy; yÞ

� �
;

and compute the Mk-normalized eigenvector ½r; s�T of the matrix pencil Lk � kMk corresponding to the leftmost
eigenvalue; make sure that r > 0.
(i) Update xk ¼ rxk þ sy.
(3) Terminate with error flag indicating that not all eigenpairs converged.
We note that 2e.ii follows a recommendation of [17].
Each iteration of the above algorithm requires one application of K, one application of L, for computing Ly at step 2h, and

two applications of M, one at step 2g and one for computing My at step 2h. The new residual at step 2a is computed by updat-
ing recursively Lxk and Mxk rather than by applying L and M.

Main memory storage requirements of the above algorithm are m vectors xj of dimension n; the number of multiplica-
tions by M can be halved by storing extra m vectors Mxj.

Main computational cost on top of the application of K, L and M is the computation of ðm� 1Þm scalar products
and axpy’s (linear combinations axþ y of two vectors x and y of dimension n) for the orthogonalization of g and y to
x1; . . . ; xk�1.

3.2. Sartoretto–Pini–Gambolati algorithm

The next algorithm is a modification of the SRQMCG2 algorithm of [26], a preconditioned version of SIRQIT-CG algorithm
of [16], with restart every ninner > 1 iteration. The modification introduced here consists in the use of a different stopping
criterion that allows deflation.

Algorithm 3.2. [SRQMCG2 by [26] with deflation]

� Set the total number of iterations itotal and the number of convergent eigenpairs l to 0.
� While itotal < imax, do repeatedly:

(1) Compute two ðm� lÞ-by-ðm� lÞ Gram matrices Ll;m and Ml;m with entries kij ¼ ðLxj; xiÞ and lij ¼ ðMxj; xiÞ,
i; j ¼ lþ 1; . . . ;m, and compute eigenvectors sj ¼ ½rij�mi¼lþ1, j ¼ 1; . . . ;m� l of the matrix pencil Ll;m � kMl;m. Update
xlþj :¼
Xm

i¼lþ1

rijxi; j ¼ 1; . . . ;m� l:
(2) Set the number of non-convergent eigenpairs nnc to zero.
(3) For i ¼ 1; . . . ;ninner do:

9484 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
(a) For k ¼ lþ 1; . . . ;m do:
(i) Compute the Rayleigh quotient kk ¼ kðxkÞ and the residual r ¼ Lxk � kkMxk.

(ii) If the norm of the residual is less than the residual tolerance, then
(A) if i ¼ 1 and k ¼ lþ 1, then increment l;
(B) if nnc ¼ 0, then go to next k; otherwise increment nnc.
(iii) Compute g ¼ Kr.
(iv) If k > 1, M-orthogonalize g to x1; . . . ; xk�1.
(v) If i > 1, then
�compute ck ¼ ðr; gÞ and b ¼ ck=ck;p, where ck;p is taken from the previous iteration (see step 3a.vi
below);
�compute the new search direction yk ¼ g þ byk;p, where yk;p is the respective previous search direc-
tion; otherwise set yk ¼ g.
(vi) Set yk;p ¼ yk and ck;p ¼ ck.
(vii) Compute the Gram matrices
Lk ¼
ðLxk; xkÞ ðLyk; xkÞ
ðxk; LykÞ ðLyk; ykÞ

� �
; Mk ¼

ðMxk; xkÞ ðMyk; xkÞ
ðxk;MykÞ ðMyk; ykÞ

� �
;

and compute the Mk-normalized eigenvector ½r; s�T of the matrix pencil Lk � kMk corresponding to
the leftmost eigenvalue; make sure that r > 0.
(viii) Update xk ¼ rxk þ syk.
(ix) If k > 1, then M-orthogonalize xk to x1; . . . ; xk�1.
(b) Increment itotal.
(c) If l P ne, then set l to zero, execute step 1 and stop.
(d) If nnc ¼ 0 go to step 1.
Each inner iteration of the above algorithm requires one application of K, two applications of L (at steps 3a.i and 3a.vii‘)
and four applications of M (at steps 3a.i, 3a.iv, 3a.vii, and 3a.ix) per each non-convergent eigenpair.

Main memory storage requirements are 2m vectors xk and yk. The number of L-applications can be reduced to one per
non-convergent eigenpair by storing extra 2m vectors Lxk and Lyk (cf. Section 3.1); the same applies to M.

Main computational cost on top of the application of K, L and M is the computation of ðm� 1Þm scalar products and axpy’s
for the orthogonalization of xk and yk to x1; . . . ; xk�1.

The impact of the Rayleigh–Ritz procedure is, for ninner ¼ 10, as used in the tests, negligible compared to other costs.
The difference between the above algorithm and the algorithm SRQMCG2 by [26] is that the cited paper suggests stopping

the iterations when the average residual norm defined as
ra ¼

ffi
1
m

Xm

i¼1

krðxjÞk2

vuut

falls below the specified tolerance. One drawback of such a stopping criterion is that one generally has to iterate vectors
which have already converged to the required accuracy (potentially, one may even end up with a zero residual, which might
lead to overflow when computing b). Another drawback is that individual residuals are not guaranteed to be smaller than the
tolerance multiplied by

ffiffiffiffiffi
m
p

, which might be a problem for large m.
The stopping criteria implemented by the modification of Sartoretto–Pini–Gambolati algorithm used here aims at remov-

ing convergent eigenpairs from the computation as soon as reasonable in order to reduce the amount of computation on each
inner iteration and the size of the trial subspace of the Rayleigh–Ritz procedure on step 1. An eigenpair is deemed to be con-
vergent if the following three conditions are met: (i) the residual norm is smaller than the required residual tolerance (cf.
step 3a.ii), (ii) the approximate eigenvector in question is a Ritz vector (cf. the condition that i ¼ 1 in 3a.ii.A), and (iii) the
eigenpair in question is the leftmost non-convergent (cf. the condition that k ¼ lþ 1 in 3a.ii.A). In order to reduce the number
of applications of the preconditioner, the conjugate gradient step is not applied if the first of the above three conditions is
met by the approximate eigenpair in question and all those to the left of it (cf. the condition nnc ¼ 0 in 3a.ii.B).

3.3. Block Polak–Ribiére algorithm

The next algorithm uses an instance of the block CG scheme (24) and (25) with a diagonal Bi computed by Polak–Ribiére
scheme.

Algorithm 3.3. Algorithm 3.3. [Block Polak–Ribiére algorithm]

(1) Compute two m-by-m Gram matrices LX and MX with entries kij ¼ ðLxj; xiÞ and lij ¼ ðMxj; xiÞ, i; j ¼ 1; . . . ;m, and com-
pute MX-normalized eigenvectors sj ¼ ½rij�mi¼1, j ¼ 1; . . . ;m of the matrix pencil LX � kMX . Compute initial approximate
eigenvectors xj, j ¼ 1; . . . ;m, by updating

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9485
xj :¼
Xm

i¼1

rijxi:
(2) Set the number of converged eigenpairs l to zero.
(3) For i ¼ 1;2; . . . ; imax, do repeatedly:
(a) Compute the Rayleigh quotients kj ¼ kðxjÞ and the residuals rj ¼ Lxj � kjMxj, j ¼ lþ 1; . . . ;m.
(b) While the norm of rlþ1 is less than the residual tolerance, increment l; if l P ne execute step 1 and

terminate.
(c) Compute W ¼ KR, where R ¼ ½rlþ1; . . . ; rm� and W ¼ ½wlþ1; . . . ;wm�.
(d) Compute cj ¼ ðwj; rjÞ. If i > 1, then
(i) compute bj ¼maxf0; ðcj � ðwj; rj;pÞÞ=cj;pg, j ¼ lþ 1; . . . ;m, where rj;p and cj;p are the residual rj and scalar
product cj taken from the previous iteration (see step 3e);

(ii) compute the new search direction matrix Y ¼ ½ylþ1; . . . ; ym�, where yj ¼ wj þ bjzj and zj are taken from the
previous iteration (see step 3e); else set Y = W.
(e) Set zj ¼ yj, rj;p ¼ rj and cj;p ¼ cj, j ¼ lþ 1; . . . ;m.
(f) M-orthogonalize Y to Xall ¼ ½x1; . . . ; xm�.
(g) Compute W ¼ MY and MY ¼ Y�W , and compute the eigenvalues lj and eigenvectors qj, j ¼ 1; . . . ;m� l, of the

auxiliary eigenvalue problem
MY q ¼ lDY q; ð32Þ

where DY is a diagonal matrix with the same diagonal as MY . Select lj that are not less than �m, where � is sig-
nificantly above the machine accuracy, and update Y :¼ YQ and W :¼WQ , where the columns of the matrix Q
are the corresponding eigenvectors qj.
(h) Compute matrices LX;Y and MX;Y given by
�� � �� �
LX;Y ¼
K X LY

ðLYÞ�X Y�LY
; MX;Y ¼

I X W

W�X Y�W
; ð33Þ

where K ¼ Diagfklþ1; . . . ; kmg, and I is the m� l-by-m� l identity matrix, and compute the MX;Y -normalized
eigenvectors sj of the problem
LX;Y s ¼ kMX;Y s: ð34Þ

Form the matrix S whose columns are the eigenvectors sj corresponding to m� l leftmost eigenvalues of (34)
and update X :¼ ½X;Y �S.
(4) Terminate with error flag indicating that not all eigenpairs converged.

Each iteration of the above algorithm requires m� l applications of K, 2ðm� lÞ applications of L (steps 3a and 3h) and
3ðm� lÞ applications of M (steps 3a, 3f and 3g).

Main memory requirements are the storage of X, Y, R, Rp and W (5m vectors). The number of L-applications can be reduced
to m� l per iteration by storing LX and LY (extra 2m vectors); the same holds for M.

Main computational cost per iteration on top of the application of K, L and M is the computation of matrices V ¼ X�allMY on
step 3h, X�MY on step 3f, Y�MY on steps 3g and 3h X�LY on step 3h and Y�LY on step 3h, ðmðm� lÞ þ 5ðm� lÞ2Þn multipli-
cations in total, and the computation of products XallV on step 3f, YQ and WQ on step 3g and ½X; Y�S on step 3h,
ðmðm� lÞ þ 4ðm� lÞ2Þn multiplications in total, assuming that no search directions are discarded on step 3g. For the standard
problem WQ is not computed, hence ðm� lÞ2n less multiplications are needed. Reducing the number of L-multiplications by
storing L-images requires additional 2ðm� lÞ2n multiplications for the update LX :¼ ½LX; LY�S; the same additional cost is in-
curred by using this technique for M.

The role of step 3g is to ensure that Cholesky factorization of MX;Y , which is used by DSYGV eigensolver routine from LA-
PACK employed in the implementation of this and other algorithms, does not fail because of the loss of positive definiteness
caused by round-off errors. In exact arithmetic, MX;Y is a diagonal matrix with lj on the diagonal. Hence, lj that are close to
the round-off error level are too sensitive to round-off errors, and Cholesky factorization becomes too inaccurate or may fail
altogether. Dropping lj’s that are below the cut-off level used on step 3g ensures that this does not happen. At the same time,
the closeness of the cut-off level to the round-off error level keeps angles between the discarded directions and accepted
ones close to minimal possible.
3.4. Trace minimization algorithm

The trace minimization algorithm tested in this paper uses another instance of the generic block CG scheme (24 and 25),
the one with Bi ¼ biIm, where bi is given by (26). Unlike with other schemes of [6], the use of preconditioning is fairly
straightforward and the scheme applies verbatim to the generalized eigenvalue problem without the need to compute
M�1v. The only difference from Algorithm 3.3 is that all bj are equal to

9486 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
b ¼ Tr ðR� RpÞ�KR
Tr R�pKRp

; ð35Þ
where R and Rp are matrices with columns rj and rj;p, j ¼ lþ 1; . . . ;m, respectively.

3.5. Block Jacobi-conjugate gradients algorithm

The next algorithm again uses an instance of the block CG scheme (24 and 25); this time with a full matrix Bi that makes
new search directions ‘individually optimal’ (see Section 2.2).

Algorithm 3.4. Algorithm 3.5. [Block Jacobi-conjugate gradients.]

(1) Perform step 1 of Algorithm 3.3.
(2) Set the number of converged eigenpairs l to zero.
(3) For i ¼ 1;2; . . . ; imax, do repeatedly:

(a) Compute the Rayleigh quotients kj ¼ kðxjÞ and the residuals rj ¼ Lxj � kjMxj, j ¼ lþ 1; . . . ;m.
(b) While the norm of rlþ1 is less than the residual tolerance, increment l; if l P ne execute step 1 and terminate.
(c) Compute W ¼ KR, where R ¼ ½rlþ1; . . . ; rm� and W ¼ ½wlþ1; . . . ;wm�.
(d) If i > 1, then

(i) compute matrices C ¼ ðLZÞ�W and D ¼ ðMZÞ�W , where Z is the previous search directions matrix taken from
the previous iteration (see step 3g);

(ii) compute matrix Bi with entries bpq given by
bpq ¼ �
cpq � klþqdpq

lp � klþq
; p ¼ 1; . . . ;nZ ; q ¼ 1; . . . ;m� l; ð36Þ

where cpq and dpq are entries of C and D, nZ is the width of Z, and lp are nZ rightmost eigenvalues of the problem
(34) solved at the previous iteration (see step 3g);
(iii) compute the new search direction matrix Y ¼W þ ZBi.

else set Y ¼W .
(e) M-orthogonalize Y to Xall ¼ ½x1; . . . ; xm�.
(f) Perform step 3g of Algorithm 3.3.
(f) Compute matrices LX;Y and MX;Y given by (33), and compute the MX;Y -normalized eigenvectors sj of the problem

(34). Form the matrix S whose columns are the eigenvectors sj corresponding to m� l leftmost eigenvalues of
(34) and the matrix V whose columns are the remaining eigenvectors of (34), compute Z ¼ ½X;Y�V and update
X :¼ ½X;Y �S.
(4) Terminate with error flag indicating that not all eigenpairs converged.

Each iteration of the above algorithm requires m� l applications of K, 3ðm� lÞ applications of L (steps 3a, 3d and 3g) and
4ðm� lÞ applications of M (steps 3a, 3d, 3e and 3f).

Main memory requirements are the storage of X, Y, Z and W (4m vectors). The number of L-applications can be reduced to
m� l per iteration by storing LX and LY (extra 2m vectors); the same holds for M.

Main computational cost per iteration on top of the application of K, L and M is the computation of matrices ðLZÞ�W and
ðMZÞ�W on step 3d, V ¼ X�allMY on step 3e, X�MY on step 3g, Y�MY on steps 3f and 3g, X�LY on step 3g and Y�LY on step 3d,
ðmðm� lÞ þ 7ðm� lÞ2Þn multiplications in total, and the computation of products ZBi on step 3d, XallV on step 3e, YQ and WQ
on step 3f and ½X;Y �S and ½X;Y�V on step 3g, ðmðm� lÞ þ 7ðm� lÞ2Þn multiplications in total, assuming that no search direc-
tions are discarded on step 3f. For the standard problem WQ is not computed, hence ðm� lÞ2n less multiplications are
needed. Reducing the number of L-multiplications by storing L-images requires additional 4ðm� lÞ2n multiplications for
the update LX :¼ ½LX; LY �S and LZ ¼ ½LX; LY �V; the same additional cost is incurred by using this technique for M.

3.6. Stabilized LOBPCG

The LOBPCG algorithm as described by [15] suffers from instabilities due to a poorly conditioned basis of the trial sub-
space. In our tests we use a version of LOBPCG that is stabilized by discarding ‘almost’ linearly dependent search directions
in the same manner as in Algorithm 3.3.

Algorithm 3.5. Algorithm 3.6. [Stabilized LOBPCG.]

(1) Perform step 1 of Algorithm 3.3.
(2) Set the number of converged eigenpairs l to zero.
(3) For i ¼ 1;2; . . . ; imax, do repeatedly:

(a) Compute the Rayleigh quotients kj ¼ kðxjÞ and the residuals rj ¼ Lxj � kjMxj, j ¼ lþ 1; . . . ;m.

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9487
(b) While the norm of rlþ1 is less than the residual tolerance, increment l; if l P ne execute step 1 and terminate.
(c) Compute Y ¼ KR, where R ¼ ½rlþ1; . . . ; rm�.
(d) M-orthogonalize Y to Xall ¼ ½x1; . . . ; xm�.
(e) Perform step 3g of Algorithm 3.3, using R in place of W.
(f) Compute matrices given by (33) using R in place of W. If i ¼ 1, then go to step 3g, else go to step 3h.
(g) Compute the MX;Y -normalized eigenvectors sj of the problem (34). Form the matrix ½SX ; SY �T, where SX is ðm� lÞ-by-
ðm� lÞ, whose columns are the eigenvectors sj corresponding to m� l leftmost eigenvalues of (34). Compute
Z ¼ YSY , update X :¼ XSX þ Z and go to next i.

(h) M-orthogonalize Z to Xall ¼ ½x1; . . . ; xm� and Y.
(i) Perform step 3e with Y replaced with Z.
(j) Compute matrices
Table 1
Matrix mult

Algorithm

Polak–Ribié
Jacobi
LOBPCG

Table 2
Matrix mult

Algorithm

Polak–Ribié
Jacobi
LOBPCG
LX;Y ;Z ¼
LX;Y ½X;Y ��LZ

ðLZÞ�½X;Y � Z�LZ

� �
; MX;Y ;Z ¼

MX;Y ½X;Y ��R
R�½X;Y � Z�R

� �
;

where X ¼ ½xlþ1; . . . ; xm�, R ¼ MY and LX;Y and MX;Y are given by (33), and compute the MX;Y;Z-normalized eigenvec-
tors sj of the problem
LX;Y;Zs ¼ kMX;Y ;Zs: ð37Þ

Form the matrix S whose columns are the eigenvectors sj corresponding to m� l leftmost eigenvalues of (37). Split
S vertically into blocks SX , SY and SZ corresponding to X, Y and Z and update Z ¼ YSY þ ZSZ and X :¼ XSX þ Z.
(4) Terminate with error flag indicating that not all eigenpairs converged.

Each iteration of the above algorithm requires m� l applications of K, 3ðm� lÞ applications of L (steps 3a,3f and 3j) and
5ðm� lÞ applications of M (steps 3a,3d,3e,3h and 3i).

Main memory requirements are the storage of X, Y, Z, and R (4m vectors). The number of L-applications can be reduced to
m� l per iteration by storing LX, LY and LZ (extra 3m vectors); the same holds for M.

Main computational cost per iteration on top of the application of K, L and M is the computation of matrices QY ¼ X�allMY
on step 3d, X�R ¼ X�MY on step 3f, Y�R ¼ Y�MY on steps 3e and 3f, X�LY and Y�LY on step 3f, QZ ¼ ½Xall;Y��MZ on step 3h,
X�R ¼ X�MZ and Y�R ¼ Y�MZ on step 3j, Z�R ¼ Z�MZ on steps 3i and 3j, X�LZ, Y�LZ and Z�LZ on step 3j,
ð2mðm� lÞ þ 13ðm� lÞ2Þn multiplications in total, and the computation of products XallQ Y on step 3d, YQ and RQ on step
3e ½Xall;Y�Q Z on step 3h, ZQ and RQ on step 3i and XSX , YSY and ZSZ on step 3j, ð2mðm� lÞ þ 8ðm� lÞ2Þn multiplications in
total, assuming that no search directions are discarded on step 3e. For the standard problem RQ is not computed on steps
3e and 3i, hence 2ðm� lÞ2n less multiplications are needed. Reducing the number of L-multiplications by storing L-images
requires additional 3ðm� lÞ2n multiplications for the update of LX and LZ on step 3j and ðmðm� lÞ þ ðm� lÞ2Þn multiplica-
tions for the update of LZ on step 3h; the same additional cost is incurred by using this technique for M.

3.7. The main linear algebra cost summary for block schemes

For reader’s convenience, the number of matrix multiplications for the four block CG schemes is summarized in Tables 1
(standard problem) and 2 (generalized problem). We note that these multiplications represent the main computational ex-
penses per iteration outside the application of K, L and M.
iplications per iteration: the standard problem

V�mWk V�kWk VmQmðþLÞ VkQkðþLÞ

re/TM 1 5 1 3(+2)
1 7 1 6(+4)
2 13 2(+1) 6(+4)

iplications per iteration: the generalized problem

V�mWk V�kWk VmQmðþLÞðþMÞ VkQkðþLÞðþMÞ

re/TM 1 5 1 4(+2)(+2)
1 7 1 7(+4)(+4)
2 13 2(+1)(+1) 8(+4)(+4)

9488 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
In the tables, Vp and Wp stand for n-by-p matrices, and Qp for a p-by-k matrix, where k ¼ m� l. The items in brackets
represent the number of additional multiplications for the case where L-images and/or M-images are stored.

4. Numerical illustration

This section presents the results of numerical experiments with algorithms described in the previous section applied to
several standard and generalized eigenvalue problems.

In our tests we use an algebraic multigrid (AMG) preconditioner very similar to that used by [1]; the differences between
the two are technical and totally irrelevant to the purposes of the present paper. A brief description of the AMG precondi-
tioning can be found in the cited paper, further details and references can be found in the review by [28].

Numerical experiments were performed on Dell Precision 490 workstation with Intel� Xeon� 5130 dual core processor at
2 GHz and 3 GB RAM. The tested algorithms were implemented in C++ using Microsoft�.NET compiler. For basic linear alge-
bra operations (dense matrix multiplications featuring in Tables 1 and 2 and the like), highly optimized BLAS and LAPACK
routines included in Intel� Math Kernel Library (version 6.1) were employed. In all tests, (pseudo-)randomly generated ini-
tial vectors were used.

4.1. Preliminary tests

We begin with the standard Laplacian-in-a-brick problem discretized by 7-point finite differences, i.e. we compute eigen-
values of the matrix
L ¼ Lnx ;ax � Iny � Inz þ Inx � Lny ;ay � Inz þ Inx � Iny � Lnz ;az ;
where Ln;a is an n-by-n three-diagonal matrix with 2h�2 and �h�2 on the main diagonal and the two adjacent diagonals
respectively, h ¼ a=ðnþ 1Þ, In is the n-by-n identity and � stands for the tensorial product of matrices.

In out first series of tests we do not use preconditioning, so that the convergence is determined by the spectrum of L only.
The purpose of these tests is to try to verify that the algorithms at hand enjoy the kind of convergence one would expect from
CG. We remind that in the case of a linear system Lx ¼ f , the number of CG iterations needed to reduce the error by a given
factor is bounded from above by a value approximately proportional to the square root of the condition number of L. A com-
parison of available convergence results for linear systems and eigenvalue problems suggests that in eigenvalue computation
the role of the said condition number is played by the ratio ðkn � kjÞ=ðkmþ1 � kjÞ, where m is as above, i.e. the number of
simultaneously iterated vectors (see e.g. [16]). Assuming nx ¼ ny ¼ nz ¼ nxyz, the latter quantity is of the order n2

xyz. Hence,
a linear growth of the iteration number in nxyz suggests that the algorithm in question enjoys a ‘proper’ CG convergence.

The two plots in Fig. 1 correspond to nxyz ¼ 10 and 40, respectively. In the legends, ‘successive PR’ stands for ‘successive
Polak–Ribiére’ (Algorithm 3.1), ‘SPG’ for ‘Sartoretto–Pini–Gambolati’ (Algorithm 3.2), ‘PR’ for ‘(block) Polak–Ribiére’ (Algo-
rithm 3.3), ‘tm’ for ‘trace minimization employing Rayleigh–Ritz procedure’ (the algorithm from Section 3.4), ‘Jacobi’ for ‘Ja-
cobi-conjugated gradients’ (Algorithm 3.4), and ‘LOBPCG’ for Algorithm 3.5. Each curve represents the sum of the errors in
the ne¼11 leftmost eigenvalues, computed by iterating m ¼ 14 vectors, plotted against the iteration number. (Here and in
most other plots we have to resort to this ‘integral’ convergence indicator in order to portray convergence behaviour of 6
algorithms using one plot per test, which hopefully makes it easier for the reader to appreciate differences and similarities
and reduces the number of plots sixfold.) We observe that the slope of all curves, save for the one that corresponds to Algo-
rithm 3.2, remains virtually unchanged. Since the range of the x-axis is proportional to nxyz, we conclude that the asymptotic
convergence of all algorithms except Algorithm 3.2 is a ‘proper’ one.

All the subsequent tests employ AMG preconditioning.
The next test exposes the dangers of using a poorly conditioned basis in the trial subspace. Fig. 2 (left) plots the eigen-

value error histories for the Laplacian on 20� 20� 20 grid in a unit cube, with eigenvalues computed by LOBPCG with
non-orthogonalized basis in spanfX;Y; Zg; the residual tolerance is set to 10�4. The orthogonalization of the basis used in
Algorithm 3.5 helped to prevent instabilities in all tests reported here but has not made this algorithm fully reliable, as
can be seen from the right-hand side plot in Fig. 2 (this time the residual tolerance is 10�8 and basis orthogonalization is
used); apparently, more thorough orthogonalization is needed (cf. [12]). We stress that the choice of a particular orthogo-
nalization scheme used in Algorithm 3.5 is motivated primarily by its relatively low computational expenses (compared
to e.g. the Gram–Schmidt procedure with re-orthogonalization), and the fact that it proved to be sufficient to prevent insta-
bilities in all tests presented here save for the one with excessive accuracy mentioned above. We note also that no instabil-
ities have ever been observed in other block algorithms tested here, even when the orthogonalization of the basis was
disabled. Still, it is not difficult to fail any such algorithm by supplying a Krylov subspace for L as the initial one (gradients
of the Rayleigh quotient at Ritz vectors in such trial subspace are all collinear). For this reason, all algorithms tested here do
use the orthogonalization as per their descriptions in Section 3.

In the next series of tests we study effects of the eigenvalue clustering. Due to the xyz-symmetry, the spectrum of the
discretized Laplacian in a cube contains triple eigenvalues. Hence, small variations of the three sizes produce three-eigen-
value clusters. In Fig. 3 we plot the sum of the errors in the ne¼20 leftmost eigenvalues, computed by iterating m ¼ 25 vectors,
against the iteration number for each algorithm applied to the discretized Laplacian in the brick

 1e-15

 1e-10

 1e-05

1

 100000

 40 80 120 160 200

er
ro

r

iteration

successive PR
SPG

PR
tm

Jacobi
LOBPCG

successive PR
SPG

PR
tm

Jacobi
LOBPCG

 1e-15

 1e-10

 1e-05

1

 100000

er
ro

r

iteration
100 200 300 400 500 600 700 800

Fig. 1. ‘CG-like’ behaviour test: n� n� n Laplacian, n ¼ 10; and 40.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

1

 100

 10000

0 2 4 6 8 10 12 14 16 18

ei
ge

nv
al

ue
 e

rr
or

s

iteration

 1e-15

 1e-10

 1e-05

1

 100000

 1e+10

0 20 40 60 80 100 120 140 160 180 200

ei
ge

nv
al

ue
 e

rr
or

s

iteration

Fig. 2. Instability caused by an ‘almost linearly dependent’ basis in the trial subspace.

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9489
ð0;1þ dÞ � ð0;1þ 2dÞ � ð0;1þ 3dÞ. The top left, top right and bottom plots correspond to d ¼ 0:1, 0:01 and 0:001, respec-
tively. We observe that the convergence of the successive iterations deteriorates in the presence of clustered eigenvalues,
which is not surprising and is actually the prime motivation for going for simultaneous iterations: the convergence of the
latter is either unaffected at all (cf. Algorithms 3.4 and 3.5) or affected only slightly.

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

1

 100

 10000

 20 40 60 80 100

er
ro

r

iteration

successive PR
SPG

PR
tm

Jacobi
LOBPCG

1

successive PR
SPG

PR
tm

Jacobi
LOBPCG

successive PR
SPG

PR
tm

Jacobi
LOBPCG

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 100

 10000

er
ro

r

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 100

 10000

er
ro

r

 20 40 60 80 100
iteration

 20 40 60 80 100
iteration

1

Fig. 3. Cluster robustness test: Laplacian in ð0; 1þ dÞ � ð0; 1þ 2dÞ � ð0; 1þ 3dÞ, d ¼ 10�1; 10�2; and 10�3.

9490 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1

 10

 100

 50 100 150 200

er
ro

r

iteration

successive PR
SPG

PR
tm

Jacobi
LOBPCG

successive PR
SPG

PR
tm

Jacobi
LOBPCG

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10

 100

er
ro

r

 50 100 150 200
iteration

Fig. 4. Si34H36: total eigenvalue error for ne¼20 (upper) and 80 (lower).

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9491
4.2. Standard problem tests

The tests of this section were performed on matrices from PARSEC group of the University of Florida matrix collection
maintained by Tim Davis (see http://www.cise.ufl.edu/research/sparse/matrices/). These matrices originate from electronic
structure calculations and are among the collection’s most formidable ones (sparse Cholesky flop counts reach above 1013 for
some). At the same time, electronic structure calculations is an area where CG algorithms with AMG preconditioning are
especially efficient (to the extent that it was possible to perform the tests of this section on a PC rather than a supercom-
puter), and are likely to be the best ever.

The problem from which the matrices in question have originated is described in [4] and further details on the PARSEC
matrices can be found in [31] (for a wider outlook on electronic structure calculations see [7]). Here we only mention that the
problem in question relates to the energy levels of electrons in a molecule, and that each matrix can be split into the sum of
two matrices, the first of which represents the discretization of the Laplacian by a high-order finite differences. Owing to this,
an AMG preconditioner for the 7-point discretization of the Laplacian on the same grid proved to be fairly efficient in our
tests.

In the tests, the residual tolerance was set to 10�3. The exact eigenvalues were not available; hence, in order to estimate
the eigenvalue error, we used eigenvalues computed with the residual tolerance 10�6 in place of the exact ones. Figs. 4–6
show the behaviour of the total eigenvalue error for matrices Si34H36 (problem size: 97,569; nonzeros: 5,156,379), Si41-
Ge41H72 (problem size: 185,639; nonzeros: 15,011,265) and Si87H76 (problem size: 240,369; nonzeros: 10,661,631),

http://www.cise.ufl.edu/research/sparse/matrices/

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1

 10

 100

 50 100 150 200

er
ro

r

iteration

successive PR
SPG

PR
tm

Jacobi
LOBPCG

iteration

successive PR
SPG

PR
tm

Jacobi
LOBPCG

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1

 50 100 150 200

er
ro

r

 10

 100

Fig. 5. Si41Ge41H72: total eigenvalue error for ne¼20 (upper) and 80 (lower).

9492 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
respectively, and Tables 3–5 show CPU times in seconds.2 In all tests m ¼ ne þ 5, and in all algorithms we opt for storing L-
images in order to reduce the number of multiplications by L. We observe that the successive computation of eigenvalues by
Polak–Ribiére algorithm is clearly non-competitive. The rest do reasonably well, with LOBPCG and Jacobi algorithms demon-
strating superior (and virtually identical) convergence. In terms of the CPU time, the latter algorithm is clearly more efficient
due to the smaller size of the trial subspace of the Rayleigh–Ritz procedure. As the number of iterated vectors increase, the block
Polak–Ribiére algorithm becomes more competitive due to computationally cheaper conjugation scheme (cf. Table 1).

4.3. Generalized problem tests

In this section we present the results of the tests with the generalized eigenvalue problem for two finite element matrices
qa8fk and qa8fm from Andrew Cunningham group in Tim Davis’ matrix collection. The problem in question relates to
acoustics – another area where CG with AMG preconditioning is likely to be the best tool for computing eigenvalues.

In the tests, the residual tolerance was set to 10�4, and eigenvalues computed with the residual tolerance 10�8 were used
in the error estimation as the exact ones.
2 It should be noted that the number of eigenpairs computed in most tests is less than the number of eigenpairs of practical interest. Nevertheless, the
reported results are practically meaningful in the following sense. For problems of a very large size, the block size m may be limited by the available memory,
and one may like to resort to a hybrid ’successive-simultaneous’ approach whereby eigenpairs are computed in small portions by using a block CG scheme
applied in the subspace orthogonal to computed eigenvectors (cf. [1]).

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1

 10

 100

 50 100 150 200

er
ro

r

iteration

successive PR
SPG

PR
tm

Jacobi
LOBPCG

successive PR
SPG

PR
tm

Jacobi
LOBPCG

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1

 10

 100

er
ro

r

 50 100 150 200
iteration

Fig. 6. Si87H76: total eigenvalue error for ne¼20 (upper) and 80 (lower).

Table 3
CPU times for Si34H36

ne Successive PR PR SPG TM Jacobi LOBPCG

20 157 97 102 139 77 98
40 395 211 252 275 172 207
60 710 302 398 426 259 325
80 1020 367 476 489 342 436
100 1280 501 684 753 461 603

Table 4
CPU times for Si41Ge41H72

ne Successive PR PR SPG TM Jacobi LOBPCG

20 502 289 359 329 221 267
40 995 426 470 513 371 496
60 1640 809 907 956 657 850
80 2350 1040 1190 1290 933 1150

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9493

Table 5
CPU times for Si87H76

ne Successive PR PR SPG TM Jacobi LOBPCG

20 420 373 489 418 307 408
40 1080 610 853 786 541 746
60 1830 1080 1610 1290 913 1210
80 2690 1270 1690 1720 1430 1720

 1e-06

 0.0001

 0.01

1

 100

 10000

 10 20 30 40 50

er
ro

r

iteration

successive PR
SPG

PR
tm

Jacobi
LOBPCG

successive PR
SPG

PR
tm

Jacobi
LOBPCG

 1e-06

 0.0001

 0.01

1

 100

 10000

er
ro

r

 10 20 30 40 50

iteration

Fig. 7. Acoustics problem: total eigenvalue error for ne¼20 (upper) and 80 (lower).

Table 6
CPU times for the acoustics problem

ne Successive PR PR SPG TM Jacobi LOBPCG

20 43.3 31.4 57.5 40.5 26.9 30.6
40 100 64.3 126 82.5 62.6 75.5
60 208 123 231 151 118 147
80 318 183 355 245 181 228

9494 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9495
The two plots in Fig. 7 show the total eigenvalue error for ne¼20 and 80, respectively, and Table 6 shows the CPU times in
seconds for ne¼20, 40, 60, and 80. In all tests m ¼ ne þ 5, and in all algorithms we opt for storing L and M-images in order to
reduce the number of multiplications by L and M. We observe pretty much the same convergence behaviour as with PARSEC
matrices, save for Sartoretto–Pini–Gambolati algorithm, the convergence behaviour of which is rather erratic.

4.4. Conclusions

(1) A conclusion one can safely draw from the numerical results presented here is that the simultaneous computation of
eigenpairs is an approach that is surely worth the effort needed to overcome theoretical and practical difficulties
involved, as opposed to the successive computation, which is considerably simpler in both respects but is much less
efficient and reliable.

(2) The block CG scheme (24 and 25) is remarkably robust: it works reasonably well for a range of matrices Bi.
(3) Idiosyncrasies of the approaches to using CG for the simultaneous eigenvalue computation discussed in Section 2.2

have visible effects on the performance of the algorithms in focus.A rather erratic convergence behaviour of Algorithm
3.2, in particular, its ‘non-CG-like’ performance in the first series of Laplacian tests, is likely to be the result of an inter-
nal conflict between its two major components, the Rayleigh–Ritz procedure and CG, discussed in Section 2.2.Conver-
gence behaviour of the remaining four algorithms illuminates the importance of ‘proper’ conjugation of search
directions in a block CG algorithm. The trace minimization, block Polak–Ribiére and Jacobi algorithms use the generic
block scheme (24) and (25) with the conjugation matrix Bi that is a multiple of identity, a diagonal matrix and a full
rectangular matrix, respectively. As we argued in Section 2.2, a trace minimization algorithm is, by its nature, likely to
produce approximate eigenpairs that converge at a similar rate that may be adversely affected by poor separation of
the eigenvalues of interest from the rest of the spectrum. A comparison with the block Polak–Ribiére algorithm (see
Fig. 8) shows that this is indeed the case, as the slopes of all eigenvalue error curves for the Rayleigh–Ritz trace min-
imization algorithm are close to each other and to the last curves for the block Polak–Ribiére algorithm. As a result, it
takes much longer for the leftmost eigenpairs to converge and be removed from the computation by deflation, which
affects the CPU times.The performance of the block Polak–Ribiére algorithm is remarkably good in terms of the CPU
time. However, this is largely due to a computationally cheap conjugation scheme (cf. Section 3.7). In terms of the con-
vergence rate, the block Polak–Ribiére algorithm is clearly inferior to that of the Jacobi algorithm and LOBPCG; hence
the former may become more expensive than the latter two in terms of the CPU time, if the computational cost of the
operator(s) and/or the preconditioning is higher than in our tests. (One should bear in mind though that the use of a
 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10 20 30 40 50 60

E
ig

en
va

lu
e

er
ro

r

Iteration

Trace minimization

Iteration

Polak-Ribiere

Iteration

LOBPCG

Iteration

Jacobi

 1e-08

 1e-06

 0.0001

 0.01

1

 100

E
ig

en
va

lu
e

er
ro

r

 1e-08

 1e-06

 0.0001

 0.01

1

 100

E
ig

en
va

lu
e

er
ro

r

 1e-08

 1e-06

 0.0001

 0.01

1

 100

E
ig

en
va

lu
e

er
ro

r

 10 20 30 40 50 60

 10 20 30 40 50 60 10 20 30 40 50 60

Fig. 8. Si41Ge41H72: eigenvalue error histories for ne¼40.

9496 E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497
more thorough stabilization technique in LOBPCG, such as the one suggested in [12], is likely to increase the compu-
tational expenses per iteration, which would compromise the performance of this algorithm.) Finally, we observe that
a remarkably similar convergence behaviour of the latter two algorithms suggest that the individual local optimality
enjoyed by the search directions of Jacobi scheme is a sufficient one: extra m vectors employed by LOBPCG do not
appear to bring about any tangible improvement in convergence (cf. the discussion in Section 2.2).

Appendix A

A.1. The Rayleigh–Ritz procedure

The Rayleigh–Ritz procedure is a procedure for finding approximations to eigenvectors of a given Hermitian operator L in
a given subspace V, referred to as the trial subspace.

Let m be the dimension of V and let v1; . . . ; vm be a set of linear independent vectors in V. Assuming for a moment that V
contains an eigenvector xj of L, one can compute xj is as follows: Since xj belongs to V, we have xj ¼ VxV

j , where V is the ma-
trix with columns v1; . . . ; vm, and xV

j is a column vector of height m. In order to find xV
j , we observe that

Lxj ¼ LVxV
j ¼ kjxj ¼ kjVxV

j , where kj is the corresponding eigenvalue of L. Multiplying the equation LVxV
j ¼ kjVxV

j by the adjoint
matrix V� (in order to obtain an m-by-m system) we find that V�LVxV

j ¼ kjV
�VxV

j , i.e. xV
j is an eigenvector of the generalized

eigenvalue problem
LV xV ¼ kV MV xV ; LV ¼ V�LV ; MV ¼ V�V : ðA:1Þ
Now let us consider the case where V contains an approximation ~xj ¼ V~xV
j to xj rather than xj. Denote ~kj ¼ kð~xjÞ. Since ~xj is

close to xj, the norm of the residual rj ¼ L~xj � ~kj~xj is small, and hence so is the norm of
V�rj ¼ V�LV~xV

j � ~kjV
�V~xV

j ¼ LV ~xV
j � ~kjMV ~xV

j ¼ rV
j . The latter vector is the residual vector for ~kj and ~xV

j in the context of the prob-
lem (A.1) and, by well-known results from the eigenvalue approximation theory (see e.g. [21]), the smallness of rV

j implies
that ~kj and ~xV

j are close to an eigenpair of (A.1). Hence, in order to extract approximations to eigenvectors of L from V, one
can compute eigenvalues kV

j of the m-by-m eigenvalue problem (A.1), called Ritz values, and corresponding eigenvectors xV
j ,

form vectors ~xj ¼ VxV
j , called Ritz vectors, and treat those that have small residuals L~xj � kV

j ~xj as approximate eigenvectors.
It remains to note that the computational procedure just described, known as the Rayleigh–Ritz procedure, can also be

applied to the generalized problem Lx ¼ kMx, the only difference being the definition of the Gram matrix MV as V�MV .
For further details see e.g. [21].

References

[1] P. Arbenz, U.L. Hetmaniuk, R.B. Lehoucq, R.S. Tuminaro, A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned
iterative methods, Int. J. Numer. Meth. Eng. 64 (2005) 204–236.

[2] L. Bergamaschi, Á. Martínez, G. Pini, Parallel preconditioned conjugate gradient optimization of the Rayleigh quotient for the solution of sparse
eigenproblems, Appl. Math. Comput. 175 (2006) 1694–1715.

[3] W.W. Bradbury, R. Fletcher, New iterative methods for solution of the eigenproblem, Numer. Math. 9 (1966) 259–267.
[4] J.R. Chelikowsky, The pseudopotential–density functional method applied to nanostructures, J. Phys. D: Appl. Phys. 33 (2000) R33–R50.
[5] J.W. Daniel, The conjugate gradient method for linear and nonlinear operators, SIAM J. Numer. Anal. 4 (1967) 10–26.
[6] A. Edelman, T.A. Arias, S.T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1998) 303–353.
[7] J.-L. Fattebert, M. Buongiorno Nardelli, Finite difference methods for ab initio electronic structure and quantum transport calculations of

nanostructures, in: Handbook of Numerical Analysis, vol. X, Special Volume: Computational Chemistry, Elsevier Science, 2003.
[8] Y.T. Feng, D.R. Owen, Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems, Int. J. Numer. Meth. Eng.

39 (1996) 2209–2229.
[9] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients, Comput. J. 7 (1964) 149–154.

[10] Z. Fu, E.M. Dowling, Conjugate gradient eigenstructure tracking for adaptive spectral estimation, IEEE Trans. Signal Process. 43 (1995) 1151–1160.
[11] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bureau Stand. 49 (1952) 409–436.
[12] U. Hetmaniuk, R. Lehoucq, Basis selection in LOBPCG, J. Comput. Phys. 218 (2006) 324–332.
[13] S.G. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Opt. Express 8 (2000) 173–

190.
[14] A.V. Knyazev, A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace, Int. Ser. Numer. Math. 96

(1991) 143–154.
[15] A.V. Knyazev, Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method, SIAM J. Sci. Comp. 2

(2001) 517–541.
[16] D.E. Longsine, S.F. McCormick, Simultaneous Rayleigh-quotient minimization methods for Ax ¼ kBx, Linear Algeb. Appl. 34 (1980) 195–234.
[17] J. Nocedal, Conjugate gradient methods and nonlinear optimization, in: L. Adams, J.L. Nazareth (Eds.), Linear and Nonlinear Conjugate Gradient Related

Methods, SIAM, 1996.
[18] E.E. Ovtchinnikov, Cluster robustness of preconditioned gradient subspace iteration eigensolvers, Linear Algeb. Appl. 415 (2006) 140–166.
[19] E.E. Ovtchinnikov, Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation I: computing an extreme

eigenvalue, SIAM J. Numer. Anal., in press.
[20] E.E. Ovtchinnikov, Jacobi correction equation, line search and conjugate gradients in Hermitian eigenvalue computation II: computing several extreme

eigenvalues, SIAM J. Numer. Anal., in press.
[21] B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, 1980.
[22] A. Perdon, G. Gambolati, Extreme eigenvalues of large sparse matrices by Rayleigh quotient and modified conjugate gradients, Comp. Meth. Appl.

Mech. Eng. 56 (1986) 251–264.
[23] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press, 1971.
[24] B.T. Polyak, Introduction to optimization, Optimization Software (1987).

E.E. Ovtchinnikov / Journal of Computational Physics 227 (2008) 9477–9497 9497
[25] A.H. Sameh, J.A. Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem, SIAM J. Numer. Anal. 19 (1982) 1243–1259.
[26] F. Sartoretto, G. Pini, G. Gambolati, Accelerated simultaneous iterations, J. Comput. Phys. 81 (1989) 53–69.
[27] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi–Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (1996) 401–425.
[28] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (2001) 281–309.
[29] I. Takahashi, A note on the conjugate gradient method, Inform. Process. Jpn. 5 (1965) 45–49.
[30] X. Yang, T.K. Sarkar, E. Arvas, A survey of conjugate gradient algorithms for solution of extreme eigenproblems of a symmetric matrix, IEEE Trans.

Acoust. Speech Signal Process. 37 (1989) 1550–1556.
[31] Y. Zhou, Y. Saad, A Chebyshev–Davidson, Algorithm for Large Symmetric Eigenvalue Problems, Technical Report, Minnesota Supercomputing Institute,

University of Minnesota, 2005.

	Computing several eigenpairs of Hermitian problems by conjugate gradient iterations
	Introduction
	Conjugate gradient schemes for eigenvalue computation
	Schemes for computing the leftmost eigenpair
	Schemes for computing several leftmost eigenpairs

	Algorithms
	Successive Polak-Ribi eacute re algorithm
	Sartoretto-Pini-Gambolati algorithm
	Block Polak-Ribi eacute re algorithm
	Trace minimization algorithm
	Block Jacobi-conjugate gradients algorithm
	Stabilized LOBPCG
	The main linear algebra cost summary for block schemes

	Numerical illustration
	Preliminary tests
	Standard problem tests
	Generalized problem tests
	Conclusions

	Appendix A
	The Rayleigh-Ritz procedure

	References

